23,466 research outputs found

    Magnetothermodynamics In SSX: Measuring The Equations Of State Of A Compressible Magnetized Plasma

    Get PDF
    Magnetothermodynamics is the study of compression and expansion of magnetized plasma with an eye toward identifying equations of state (EOSs) for magneto-inertial fusion experiments. We present recent results from Swarthmore Spheromak Experiment (SSX) experiments on the thermodynamics of compressed magnetized plasmas called Taylor states. In these experiments, we generate twisted flux ropes of magnetized, relaxed plasma accelerated from one end of a 1.5-m-long copper flux conserver and observe their compression in a closed conducting boundary installed at the other end. Plasma parameters are measured during compression. The instances of ion heating during compression are identified by constructing a pressure-volume diagram using measured density, temperature, and volume of the magnetized plasma. While we only measure compression up to 30%, we speculate that if higher compression ratios could be achieved, the compressed Taylor states could form the basis of a new kind of fusion engine. The theoretically predicted magnetohydrodynamic (MHD) and double-adiabatic [Chew-Goldberger-Low (CGL)] EOSs are compared to experimental measurements to estimate the adiabatic nature of the compressed plasma. Since our magnetized plasmas relax to an equilibrium described by MHD, one might expect their thermodynamics to be governed by the corresponding EOS. However, we find that the MHD EOS is not supported by our data. Our results are more consistent with the parallel CGL EOS suggesting that these weakly collisional plasmas have most of their proton energy in the direction parallel to the magnetic field

    Magnetothermodynamics In SSX: Measuring The Equations Of State Of A Compressible Magnetized Plasma

    Get PDF
    Magnetothermodynamics is the study of compression and expansion of magnetized plasma with an eye toward identifying equations of state (EOSs) for magneto-inertial fusion experiments. We present recent results from Swarthmore Spheromak Experiment (SSX) experiments on the thermodynamics of compressed magnetized plasmas called Taylor states. In these experiments, we generate twisted flux ropes of magnetized, relaxed plasma accelerated from one end of a 1.5-m-long copper flux conserver and observe their compression in a closed conducting boundary installed at the other end. Plasma parameters are measured during compression. The instances of ion heating during compression are identified by constructing a pressure-volume diagram using measured density, temperature, and volume of the magnetized plasma. While we only measure compression up to 30%, we speculate that if higher compression ratios could be achieved, the compressed Taylor states could form the basis of a new kind of fusion engine. The theoretically predicted magnetohydrodynamic (MHD) and double-adiabatic [Chew-Goldberger-Low (CGL)] EOSs are compared to experimental measurements to estimate the adiabatic nature of the compressed plasma. Since our magnetized plasmas relax to an equilibrium described by MHD, one might expect their thermodynamics to be governed by the corresponding EOS. However, we find that the MHD EOS is not supported by our data. Our results are more consistent with the parallel CGL EOS suggesting that these weakly collisional plasmas have most of their proton energy in the direction parallel to the magnetic field

    Upper bounds on secret key agreement over lossy thermal bosonic channels

    Get PDF
    Upper bounds on the secret-key-agreement capacity of a quantum channel serve as a way to assess the performance of practical quantum-key-distribution protocols conducted over that channel. In particular, if a protocol employs a quantum repeater, achieving secret-key rates exceeding these upper bounds is a witness to having a working quantum repeater. In this paper, we extend a recent advance [Liuzzo-Scorpo et al., arXiv:1705.03017] in the theory of the teleportation simulation of single-mode phase-insensitive Gaussian channels such that it now applies to the relative entropy of entanglement measure. As a consequence of this extension, we find tighter upper bounds on the non-asymptotic secret-key-agreement capacity of the lossy thermal bosonic channel than were previously known. The lossy thermal bosonic channel serves as a more realistic model of communication than the pure-loss bosonic channel, because it can model the effects of eavesdropper tampering and imperfect detectors. An implication of our result is that the previously known upper bounds on the secret-key-agreement capacity of the thermal channel are too pessimistic for the practical finite-size regime in which the channel is used a finite number of times, and so it should now be somewhat easier to witness a working quantum repeater when using secret-key-agreement capacity upper bounds as a benchmark.Comment: 16 pages, 1 figure, minor change
    • …
    corecore